Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells.

نویسندگان

  • Wai-Yeung Wong
  • Xing-Zhu Wang
  • Ze He
  • Aleksandra B Djurisić
  • Cho-Tung Yip
  • Kai-Yin Cheung
  • Hai Wang
  • Chris S K Mak
  • Wai-Kin Chan
چکیده

Bulk heterojunction solar cells have been extensively studied owing to their great potential for cost-effective photovoltaic devices. Although recent advances resulted in the fabrication of poly(3-hexylthiophene) (P3HT)/fullerene derivative based solar cells with efficiencies in the range 4.4-5.0%, theoretical calculations predict that the development of novel donor materials with a lower bandgap is required to exceed the power-conversion efficiency of 10%. However, all of the lower bandgap polymers developed so far have failed to reach the efficiency of P3HT-based cells. To address this issue, we synthesized a soluble, intensely coloured platinum metallopolyyne with a low bandgap of 1.85 eV. The solar cells, containing metallopolyyne/fullerene derivative blends as the photoactive material, showed a power-conversion efficiency with an average of 4.1%, without annealing or the use of spacer layers needed to achieve comparable efficiency with P3HT. This clearly demonstrates the potential of metallated conjugated polymers for efficient photovoltaic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility

Polymer solar cells (PSCs) have attracted great attention in recent years because of their advantages of easy fabrication, low cost, light weight, and potential for flexible devices. However, the power conversion efficiency (PCE) of the PSCs needs to be improved for future commercial applications. Factors limiting the PCE of the PSCs include the low exploitation of sunlight due to the narrow ab...

متن کامل

11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by...

متن کامل

Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells.

Incorporating biphenyls as co-monomers in electron-deficient diketopyrrolopyrrole (DPP) conjugated polymers enables widening the optical band gap to 1.70 eV. Power conversion efficiencies of 3.7-5.7% and high open-circuit voltages of 0.80-0.93 V are obtained in solar cells based on these wide band gap DPP polymers.

متن کامل

Investigations of New Low Gap Conjugated Compounds Based on Thiophene-Phenylene as Solar Cells Materials

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The co...

متن کامل

Conjugated Polymers for Organic Solar Cells

Energy shortage has become a worldwide issue in the 21st century (Lior, 2008). The urge to look for renewable energy to replace fossil fuel has driven substantial research effort into the energy sector (Hottel, 1989). The solar energy has enormous potential to take the place due to its vast energy stock and availability worldwide (Balzani et al., 2008). Conventional solar energy conversion devi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2007